Στοιχεία Εὐκλείδου ιγ΄

[Βιβλίον XIII]


Προτάσεις ιη΄. [18]

α΄. [1]
Ἐὰν εὐθεῖα γραμμὴ ἄκρον καὶ μέσον λόγον τμηθῇ, τὸ μεῖζον τμῆμα προσλαβὸν τὴν ἡμίσειαν τῆς ὅλης πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου.


β΄.[2]
Ἐὰν εὐθεῖα γραμμὴ τμήματος ἑαυτῆς πενταπλάσιον δύνηται, τῆς διπλασίας τοῦ εἰρημένου τμήματος ἄκρον καὶ μέσον λόγον τεμνομένης τὸ μεῖζον τμῆμα τὸ λοιπὸν μέρος ἐστὶ τῆς ἐξ ἀρχῆς εὐθείας.


γ΄.[3]
Ἐὰν εὐθεῖα γραμμὴ ἄκρον καὶ μέσον λόγον τμηθῇ, τὸ ἔλασσον τμῆμα προσλαβὸν τὴν ἡμίσειαν τοῦ μείζονος τμήματος πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τοῦ μείζονος τμήματος τετραγώνου.


δ΄.[4]
Ἐὰν εὐθεῖα γραμμὴ ἄκρον καὶ μέσον λόγον τμηθῇ, τὸ ἀπὸ τῆς ὅλης καὶ τοῦ ἐλάσσονος τμήματος, τὰ συναμφότερα τετράγωνα, τριπλάσιά ἐστι τοῦ ἀπὸ τοῦ μείζονος τμήματος τετραγώνου.


ε΄.[5]
Ἐὰν εὐθεῖα γραμμὴ ἄκρον καὶ μέσον λόγον τμηθῇ, καὶ προστεθῇ αὐτῇ ἴση τῷ μείζονι τμήματι, ἡ ὅλη εὐθεῖα ἄκρον καὶ μέσον λόγον τέτμηται, καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ ἐξ ἀρχῆς εὐθεῖα.


ς΄.[6]
Ἐὰν εὐθεῖα ῥητὴ ἄκρον καὶ μέσον λόγον τμηθῇ, ἑκάτερον τῶν τμημάτων ἄλογός ἐστιν ἡ καλουμένη ἀποτομή.


ζ΄.[7]
Ἐὰν πενταγώνου ἰσοπλεύρου αἱ τρεῖς γωνίαι ἤτοι αἱ κατὰ τὸ ἑξῆς ἢ αἱ μὴ κατὰ τὸ ἑξῆς ἴσαι ὦσιν, ἰσογώνιον ἔσται τὸ πεντάγωνον.


η΄.[8]
Ἐὰν πενταγώνου ἰσοπλεύρου καὶ ἰσογωνίου τὰς κατὰ τὸ ἑξῆς δύο γωνίας ὑποτείνωσιν εὐθεῖαι, ἄκρον καὶ μέσον λόγον τέμνουσιν ἀλλήλας, καὶ τὰ μείζονα αὐτῶν τμήματα ἴσα ἐστὶ τῇ τοῦ πενταγώνου πλευρᾷ.


θ΄.[9]
Ἐὰν ἡ τοῦ ἑξαγώνου πλευρὰ καὶ ἡ τοῦ δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων συντεθῶσιν, ἡ ὅλη εὐθεῖα ἄκρον καὶ μέσον λόγον τέτμηται, καὶ τὸ μεῖζον αὐτῆς τμῆμά ἐστιν ἡ τοῦ ἑξαγώνου πλευρά.


ι΄.[10]
Ἐὰν εἰς κύκλον πεντάγωνον ἰσόπλευρον ἐγγραφῇ, ἡ τοῦ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων.


ια΄.[11]
Ἐὰν εἰς κύκλον ῥητὴν ἔχοντα τὴν διάμετρον πεντάγωνον ἰσόπλευρον ἐγγραφῇ, ἡ τοῦ πενταγώνου πλευρὰ ἄλογός ἐστιν ἡ καλουμένη ἐλάσσων.


ιβ΄.[12]
Ἐὰν εἰς κύκλον τρίγωνον ἰσόπλευρον ἐγγραφῇ, ἡ τοῦ τριγώνου πλευρὰ δυνάμει τριπλασίων ἐστὶ τῆς ἐκ τοῦ κέντρου τοῦ κύκλου.


ιγ΄.[13]
Πυραμίδα συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ καὶ δεῖξαι, ὅτι ἡ τῆς σφαίρας διάμετρος δυνάμει ἡμιολία ἐστὶ τῆς πλευρᾶς τῆς πυραμίδος.


ιδ΄.[14]
Ὀκτάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν, ᾗ καὶ τὰ πρότερα, καὶ δεῖξαι, ὅτι ἡ τῆς σφαίρας διάμετρος δυνάμει διπλασία ἐστὶ τῆς πλευρᾶς τοῦ ὀκταέδρου.


ιε΄.[15]
Κύβον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν, ᾗ καὶ τὴν πυραμίδα, καὶ δεῖξαι, ὅτι ἡ τῆς σφαίρας διάμετρος δυνάμει τριπλασίων ἐστὶ τῆς τοῦ κύβου πλευρᾶς.


ις΄.[16]
Εἰκοσάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν, ᾗ καὶ τὰ προειρημένα σχήματα, καὶ δεῖξαι, ὅτι ἡ τοῦ εἰκοσαέδρου πλευρὰ ἄλογός ἐστιν ἡ καλουμένη ἐλάττων.


ιζ΄.[17]
Δωδεκάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν, ᾗ καὶ τὰ προειρημένα σχήματα, καὶ δεῖξαι, ὅτι ἡ τοῦ δωδεκαέδρου πλευρὰ ἄλογός ἐστιν ἡ καλουμένη ἀποτομή.


ιη΄.[18]
Τὰς πλευρὰς τῶν πέντε σχημάτων ἐκθέσθαι καὶ συγκρῖναι πρὸς ἀλλήλας.


Copyright©1999 Dimitrios E. Mourmouras