Στοιχεία Εὐκλείδου ζ΄

[Βιβλίον VII]


Αἱ Προτάσεις τῶν Στοιχείων ζ΄.
Προηγουμένη Πρότασις
Ἑπομένη Πρότασις

Πρότασις λδ΄. [34]

Δύο ἀριθμῶν δοθέντων εὑρεῖν, ὃν ἐλάχιστον μετροῦσιν ἀριθμόν.

Ἔστωσαν οἱ δοθέντες δύο ἀριθμοὶ οἱ Α, Β· δεῖ δὴ εὑρεῖν, ὃν ἐλάχιστον μετροῦσιν ἀριθμόν.

Οἱ Α, Β γὰρ ἤτοι πρῶτοι πρὸς ἀλλήλους εἰσὶν ἢ οὔ. ἔστωσαν πρότερον οἱ Α, Β πρῶτοι πρὸς ἀλλήλους, καὶ ὁ Α τὸν Β πολλαπλασιάσας τὸν Γ ποιείτω· καὶ ὁ Β ἄρα τὸν Α πολλαπλασιάσας τὸν Γ πεποίηκεν. οἱ Α, Β ἄρα τὸν Γ μετροῦσιν. λέγω δή, ὅτι καὶ ἐλάχιστον. εἰ γὰρ μή, μετρήσουσί τινα ἀριθμὸν οἱ Α, Β ἐλάσσονα ὄντα τοῦ Γ. μετρείτωσαν τὸν Δ. καὶ ὁσάκις ὁ Α τὸν Δ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Ε, ὁσάκις δὲ ὁ Β τὸν Δ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Ζ· ὁ μὲν Α ἄρα τὸν Ε πολλαπλασιάσας τὸν Δ πεποίηκεν, ὁ δὲ Β τὸν Ζ πολλαπλασιάσας τὸν Δ πεποίηκεν· ἴσος ἄρα ἐστὶν ὁ ἐκ τῶν Α, Ε τῷ ἐκ τῶν Β, Ζ. ἔστιν ἄρα ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Ζ πρὸς τὸν Ε. οἱ δὲ Α, Β πρῶτοι, οἱ δὲ πρῶτοι καὶ ἐλάχιστοι, οἱ δὲ ἐλάχιστοι μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ἰσάκις ὅ τε μείζων τὸν μείζονα καὶ ὁ ἐλάσσων τὸν ἐλάσσονα· ὁ Β ἄρα τὸν Ε μετρεῖ, ὡς ἑπόμενος ἑπόμενον. καὶ ἐπεὶ ὁ Α τοὺς Β, Ε πολλαπλασιάσας τοὺς Γ, Δ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Β πρὸς τὸν Ε, οὕτως ὁ Γ πρὸς τὸν Δ. μετρεῖ δὲ ὁ Β τὸν Ε· μετρεῖ ἄρα καὶ ὁ Γ τὸν Δ ὁ μείζων τὸν ἐλάσσονα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα οἱ Α, Β μετροῦσί τινα ἀριθμὸν ἐλάσσονα ὄντα τοῦ Γ. ὁ Γ ἄρα ἐλάχιστος ὢν ὑπὸ τῶν Α, Β μετρεῖται.

Βιβλίον ζ΄ Πρότασις 34

Μὴ ἔστωσαν δὴ οἱ Α, Β πρῶτοι πρὸς ἀλλήλους, καὶ εἰλήφθωσαν ἐλάχιστοι ἀριθμοὶ τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Β οἱ Ζ, Ε· ἴσος ἄρα ἐστὶν ὁ ἐκ τῶν Α, Ε τῷ ἐκ τῶν Β, Ζ. καὶ ὁ Α τὸν Ε πολλαπλασιάσας τὸν Γ ποιείτω· καὶ ὁ Β ἄρα τὸν Ζ πολλαπλασιάσας τὸν Γ πεποίηκεν· οἱ Α, Β ἄρα τὸν Γ μετροῦσιν. λέγω δή, ὅτι καὶ ἐλάχιστον. εἰ γὰρ μή, μετρήσουσί τινα ἀριθμὸν οἱ Α, Β ἐλάσσονα ὄντα τοῦ Γ. μετρείτωσαν τὸν Δ. καὶ ὁσάκις μὲν ὁ Α τὸν Δ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Η, ὁσάκις δὲ ὁ Β τὸν Δ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Θ. ὁ μὲν Α ἄρα τὸν Η πολλαπλασιάσας τὸν Δ πεποίηκεν, ὁ δὲ Β τὸν Θ πολλαπλασιάσας τὸν Δ πεποίηκεν. ἴσος ἄρα ἐστὶν ὁ ἐκ τῶν Α, Η τῷ ἐκ τῶν Β, Θ· ἔστιν ἄρα ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Θ πρὸς τὸν Η. ὡς δὲ ὁ Α πρὸς τὸν Β, οὕτως ὁ Ζ πρὸς τὸν Ε· καὶ ὡς ἄρα ὁ Ζ πρὸς τὸν Ε, οὕτως ὁ Θ πρὸς τὸν Η. οἱ δὲ Ζ, Ε ἐλάχιστοι, οἱ δὲ ἐλάχιστοι μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ἰσάκις ὅ τε μείζων τὸν μείζονα καὶ ὁ ἐλάσσων τὸν ἐλάσσονα· ὁ Ε ἄρα τὸν Η μετρεῖ. καὶ ἐπεὶ ὁ Α τοὺς Ε, Η πολλαπλασιάσας τοὺς Γ, Δ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Ε πρὸς τὸν Η, οὕτως ὁ Γ πρὸς τὸν Δ. ὁ δὲ Ε τὸν Η μετρεῖ· καὶ ὁ Γ ἄρα τὸν Δ μετρεῖ ὁ μείζων τὸν ἐλάσσονα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα οἱ Α, Β μετρήσουσί τινα ἀριθμὸν ἐλάσσονα ὄντα τοῦ Γ. ὁ Γ ἄρα ἐλάχιστος ὢν ὑπὸ τῶν Α, Β μετρεῖται· ὅπερ ἔδει δεῖξαι




Ἑπομένη Πρότασις
Προηγουμένη Πρότασις
Αἱ Προτάσεις τῶν Στοιχείων ζ΄.
Περιεχόμενα Στοιχείων Εὐκλείδου
Copyright©1999 Dimitrios E. Mourmouras